首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2362716篇
  免费   177330篇
  国内免费   4141篇
耳鼻咽喉   32289篇
儿科学   76404篇
妇产科学   63458篇
基础医学   348820篇
口腔科学   64165篇
临床医学   212844篇
内科学   459748篇
皮肤病学   52207篇
神经病学   186519篇
特种医学   89000篇
外国民族医学   491篇
外科学   357006篇
综合类   49338篇
现状与发展   13篇
一般理论   849篇
预防医学   182930篇
眼科学   54593篇
药学   177411篇
  17篇
中国医学   5327篇
肿瘤学   130758篇
  2021年   18276篇
  2019年   20479篇
  2018年   28104篇
  2017年   21212篇
  2016年   23665篇
  2015年   26837篇
  2014年   37603篇
  2013年   55755篇
  2012年   77066篇
  2011年   81785篇
  2010年   48463篇
  2009年   45884篇
  2008年   76584篇
  2007年   81370篇
  2006年   82023篇
  2005年   79427篇
  2004年   75817篇
  2003年   72746篇
  2002年   70294篇
  2001年   109146篇
  2000年   111698篇
  1999年   93405篇
  1998年   25592篇
  1997年   22168篇
  1996年   22559篇
  1995年   22732篇
  1994年   20927篇
  1993年   19728篇
  1992年   72162篇
  1991年   70323篇
  1990年   68625篇
  1989年   65878篇
  1988年   60464篇
  1987年   59275篇
  1986年   55386篇
  1985年   53124篇
  1984年   39377篇
  1983年   33412篇
  1982年   19816篇
  1979年   35896篇
  1978年   25646篇
  1977年   21189篇
  1976年   20309篇
  1975年   21801篇
  1974年   26165篇
  1973年   24831篇
  1972年   23252篇
  1971年   22075篇
  1970年   20277篇
  1969年   19346篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
81.
82.
83.
Circulating tumor cells (CTCs) in the blood of cancer patients are of high clinical relevance. Since detection and isolation of CTCs often rely on cell dimensions, knowledge of their size is key. We analyzed the median CTC size in a large cohort of breast (BC), prostate (PC), colorectal (CRC), and bladder (BLC) cancer patients. Images of patient‐derived CTCs acquired on cartridges of the FDA‐cleared CellSearch® method were retrospectively collected and automatically re‐analyzed using the accept software package. The median CTC diameter (μm) was computed per tumor type. The size differences between the different tumor types and references (tumor cell lines and leukocytes) were nonparametrically tested. A total of 1962 CellSearch® cartridges containing 71 612 CTCs were included. In BC, the median computed diameter (CD) of patient‐derived CTCs was 12.4 μm vs 18.4 μm for cultured cell line cells. For PC, CDs were 10.3 μm for CTCs vs 20.7 μm for cultured cell line cells. CDs for CTCs of CRC and BLC were 7.5 μm and 8.6 μm, respectively. Finally, leukocytes were 9.4 μm. CTC size differed statistically significantly between the four tumor types and between CTCs and the reference data. CTC size differences between tumor types are striking and CTCs are smaller than cell line tumor cells, whose size is often used as reference when developing CTC analysis methods. Based on our data, we suggest that the size of CTCs matters and should be kept in mind when designing and optimizing size‐based isolation methods.

Abbreviations

ACCEPT
Automated CTC Classification, Enumeration, and PhenoTyping software
BC
breast cancer
BLC
bladder cancer
CD
computed diameter
CEL
cultured tumor cell (cell line)
CK
cytokeratin
CRC
colorectal cancer
CTC‐L
circulating tumor cells derived from cerebrospinal fluid (liquor)
CTCs
circulating tumor cells
DAPI
4′6‐diamidino‐2‐phenylindole
EMT
epithelial–mesenchymal transition
EpCAM
epithelial cell adhesion molecule
IQR
interquartile range
KW test
Kruskal–Wallis test
MWU test
Mann–Whitney U test
NCR
nucleus/cytoplasm ratio
P2A
perimeter to area
PC
prostate cancer
TIF
tagged Image Format files
TXT
text file
μm
micrometer
µm2
square micrometers
  相似文献   
84.
85.
Aluminum matrix composites (AMC) are of great interest and importance as high-performance materials with enhanced mechanical properties. Al2O3 is a commonly used reinforcement in AMCs fabricated by means of various technological methods, including casting and sintering. Selective laser melting (SLM) is a suitable modern method of the fabrication of net-shape fully dense parts from AMC with alumina. The main results, achievements, and difficulties of SLM applied to AMCs with alumina are discussed in this review and compared with conventional methods. It was shown that the initial powder preparation, namely the particle size distribution, sphericity, and thorough mixing, affected the final microstructure and properties of SLMed materials drastically. The distribution of reinforcing particles tends to consolidate the near-melting pool-edges process because of pushing by the liquid–solid interface during the solidification process that is a common problem of various fabrication methods. The achievement of an homogeneous distribution was shown to be possible through both the thorough mixing of the initial powders and the precise optimization of SLM parameters. The strength of the AMCs fabricated by the SLM method was relatively low compared with materials produced by conventional methods, while for superior relative densities of more than 99%, hardness and tribological properties were obtained, making SLM a promising method for the Al-based matrix composites with Al2O3.  相似文献   
86.
87.
88.
89.
90.
BACKGROUND AND PURPOSE:In the chronic phase after traumatic brain injury, DTI findings reflect WM integrity. DTI interpretation in the subacute phase is less straightforward. Microbleed evaluation with SWI is straightforward in both phases. We evaluated whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase.MATERIALS AND METHODS:Sixty of 211 consecutive patients 18 years of age or older admitted to our emergency department ≤24 hours after moderate to severe traumatic brain injury matched the selection criteria. Standardized 3T SWI, DTI, and T1WI were obtained 3 and 26 weeks after traumatic brain injury in 31 patients and 24 healthy volunteers. At baseline, microbleed concentrations were calculated. At follow-up, mean diffusivity (MD) was calculated in the normal-appearing WM in reference to the healthy volunteers (MDz). Through linear regression, we evaluated the relation between microbleed concentration and MDz in predefined structures.RESULTS:In the cerebral hemispheres, MDz at follow-up was independently associated with the microbleed concentration at baseline (left: B = 38.4 [95% CI 7.5–69.3], P = .017; right: B = 26.3 [95% CI 5.7–47.0], P = .014). No such relation was demonstrated in the central brain. MDz in the corpus callosum was independently associated with the microbleed concentration in the structures connected by WM tracts running through the corpus callosum (B = 20.0 [95% CI 24.8–75.2], P < .000). MDz in the central brain was independently associated with the microbleed concentration in the cerebral hemispheres (B = 25.7 [95% CI 3.9–47.5], P = .023).CONCLUSIONS:SWI-assessed microbleeds in the subacute phase are associated with DTI-based WM integrity in the chronic phase. These associations are found both within regions and between functionally connected regions.

The yearly incidence of traumatic brain injury (TBI) is around 300 per 100,000 persons.1,2 Almost three-quarters of patients with moderate to severe TBI have traumatic axonal injury (TAI).3 TAI is a major predictor of functional outcome,4,5 but it is mostly invisible on CT and conventional MR imaging.6,7DTI provides direct information on WM integrity and axonal injury.5,8 However, DTI abnormalities are neither specific for TAI nor stable over time. Possibly because of the release of mass effect and edema and resorption of blood products, the effects of concomitant (non-TAI) injury on DTI are larger in the subacute than in the chronic phase (>3 months).4,9,10 Therefore, DTI findings are expected to reflect TAI more specifically in the chronic than in the subacute phase (1 week–3 months).4 Even in regions without concomitant injury, the effects of TAI on DTI are dynamic, possibly caused by degeneration and neuroplastic changes.6,11,12 These ongoing pathophysiological processes possibly contribute to the emerging evidence that DTI findings in the chronic phase are most closely associated with the eventual functional outcome.12,13Although DTI provides valuable information, its acquisition, postprocessing, and interpretation in individual patients are demanding. SWI, with which microbleeds can be assessed with high sensitivity, is easier to interpret and implement in clinical practice. In contrast to DTI, SWI-detected traumatic microbleeds are more stable1 except in the hyperacute14,15 and the late chronic phases.16 Traumatic cerebral microbleeds are commonly interpreted as signs of TAI. However, the relation is not straightforward. On the one hand, nontraumatic microbleeds may be pre-existing. On the other hand, even if traumatic in origin, microbleeds represent traumatic vascular rather than axonal injury.17 Indeed, TAI is not invariably hemorrhagic.18 Additionally, microbleeds may secondarily develop after trauma through mechanisms unrelated to axonal injury, such as secondary ischemia.18DTI is not only affected by pathophysiological changes but also by susceptibility.19 The important susceptibility-effect generated by microbleeds renders the interpretation of DTI findings at the location of microbleeds complex. In the chronic phase, mean diffusivity (MD) is the most robust marker of WM integrity.4,6 For these reasons, we evaluated MD in the normal-appearing WM.Much TAI research focuses on the corpus callosum because it is commonly involved in TAI5,18,20 and it can reliably be evaluated with DTI,5,21 and TAI in the corpus callosum is related to clinical prognosis.6,20 The corpus callosum consists of densely packed WM tracts that structurally and functionally connect left- and right-sided brain structures.22 The integrity of the corpus callosum is associated with the integrity of the brain structures it connects.23 Therefore, microbleeds in brain structures that are connected through the corpus callosum may affect callosal DTI findings. Analogous to this, microbleeds in the cerebral hemispheres, which exert their function through WM tracts traveling through the deep brain structures and brain stem,24,25 may affect DTI findings in the WM of the latter.Our purpose was to evaluate whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase. We investigated this relation within the cerebral hemispheres and the central brain and between regions that are functionally connected by WM tracts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号